
Analyzing Properties and Behavior of Service Discovery Protocols
Using an Architecture-Based Approach

Christopher Dabrowski and Kevin Mills

National Institute of Standards and Technology
Gaithersburg, MD USA 20899
{cdabrowski, kmills} @nist.gov

Abstract

Current trends suggest that future software systems may
appear as collections of distributed components that
combine and recombine dynamically in response to
changing conditions. Such dynamic environments will
require new analysis approaches and tools for software
design. In this paper, we investigate an architecture-
based approach to evaluate and compare designs for
service discovery protocols operating under network and
node failures. We elaborate our approach, using Jini as a
specific example, and show how Jini can be analyzed
using Rapide, an Architecture Description Language
(ADL). Our analyses take two forms: property analysis
and event analysis. We use property analysis to
investigate robustness to dynamic change, while we use
event analysis to discern underlying causes of observed
behavior and performance. We evaluate how well Rapide
supported our modeling and analyses. We also
recommend improvements in ADLs to help test and
analyze designs for distributed systems.

1. Introduction

Numerous trends suggest that future software will
operate in an environment much more uncertain than
today’s typical client-server paradigm. Increased
deployment of wireless communications, implying greater
user mobility, coupled with proliferation of personal
digital assistants and other information appliances,
foretell a future where software components can never be
quite sure about the network connectivity available, about
the other software services and components nearby, or
about the state of the network neighborhood a few
minutes in the future. In the most extreme situations, as
found for example in military applications [1], software
components composing a distributed system may find that
cooperating components disappear due to physical or
cyber attacks or due to jamming of communication
channels or movement of computing platforms beyond
communications range. Even in less demanding
circumstances, increased use of computer chips, network
communications, and software to implement a growing
range of consumer appliances portends the need for
simple, self-contained units that, when powered on, can

discover their technical surroundings and then
automatically configure themselves into a larger system
that might already be deployed. Further, as the consumer
rearranges components in such a system, then the system
must automatically adapt its configuration as necessary.
Such environments demand new analysis approaches and
tools for software design, implementation, and testing.

Our work considers how one might rigorously assess
the robustness of distributed software systems in response
to dynamic change, such as process, node, and link
failures of both a temporary and permanent nature. More
particularly we seek techniques to test the behavior and
resilience of dynamic distributed systems, and to compare
and contrast various approaches to design such systems.
As a challenging application we investigate service
discovery protocols, which provide mechanisms for
rendezvous and robustness in the face of uncertainty.
Such mechanisms enable dynamic elements in a network:
1) to discover each other, 2) to express opportunities for
collaboration, and 3) to compose themselves into larger
collections that cooperate to meet an application need. In
this paper, we limit our analysis to Jini(tm)1 Networking
Technology, one of at least six service discovery
protocols [2]-[7] designed to date. Future papers will
consider additional discovery protocols.

We wish to address software robustness as early as
possible in the engineering lifecycle because the earlier a
design error can be uncovered, the lower the cost to
repair. For this reason, we use an Architectural
Description Language (ADL) [12]-[19] to transform
natural-language specifications into architectural models
that provide rigorous representation of system structure
and behavior. Such architectural models, coupled with
appropriate automated analysis tools, permit designers to
uncover and correct errors and omissions, and to clarify
ambiguities that would otherwise lead to incorrect
behavior, or to performance problems, after a
specification has been implemented and the resulting

1 Certain commercial products or company names are identified in

this report to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that
the products or names identified are necessarily the best available for the
purpose.

software deployed. Architectural models also provide
significant advantages over less formal approaches when
comparing and contrasting alternate designs for dynamic
distributed systems, such as service discovery protocols.

Other authors compare various service discovery
protocols [8]-[11], [22], [24]. While instructive, these
comparisons exhibit significant limitations. For example,
existing comparisons are largely functional in nature and
informal in presentation. Such comparisons cannot
capture nor express a deep understanding of the
behavioral properties of the protocols, nor can these
comparisons uncover areas of ambiguity, inconsistency,
and incompleteness within the specifications. Further,
existing comparisons use concepts and terminology taken
from individual specifications. Since each specification
adopts a unique language for describing its design, it
becomes difficult to compare the designs directly. In
future work, we aim to contribute a more rigorous
comparison of three discovery protocols: Jini [4], UPnP
[3], and SLP [6].

The current study serves two purposes: 1) validate our
approach against the specification for Jini and 2) evaluate
the suitability of ADLs to model and analyze dynamic
distributed systems. To perform this study, we examined
several ADLs [12]-[19], selecting Rapide [12], an ADL
developed at Stanford University. Rapide specializes in
modeling architectures for real-time, distributed systems
and therefore represents behavior in a form suitable to
investigate discovery protocols. Rapide also comes with
an accompanying suite of analysis tools that can execute a
specification and can record and visualize system
behavior.

This paper reports our initial results with respect to
modeling and analyzing the Jini specification. The paper
is organized as five sections. First, we describe our
approach to model and analyze discovery protocols. We
provide a general architecture intended to encompass all
the protocols we studied. Using Jini as an example, we
illustrate how this architecture can be used to model a
specific protocol, and then how the model can be
converted to an executable specification, described using
Rapide. In the second section, Analysis Approaches, we
discuss the application of ADL tools to analyze logical
properties of our models, and in the process to uncover
specification deficiencies, and to assess the degree to
which the model satisfies selected consistency conditions.
Further, we show how behavior traces from our model
can be analyzed to produce quantitative metrics. In the
third section, we report and discuss the results obtained
from our initial analysis of Jini. We examine how well
our Jini model satisfies selected consistency conditions,
and we characterize the behavior and performance of Jini
with respect to particular scenarios. In the fourth section,
we assess our experiences using an ADL and related tools
to model and analyze Jini. We report our positive

findings, along with recommendations for improvements.
In the fifth section, we provide our conclusions and
outline future work.

2. Modeling with an Architecture-based
Approach

Most extant discovery protocols are specified
statically, using natural language, and supplemented with
reference software that provides one presumably
legitimate implementation of the specification. The static
specification expresses the appropriate behavior of system
components in reaction to particular events and
conditions. The reference implementation contains
incidental complexity needed to fit the protocol into a
software framework that includes various supporting
components. Typically, static specifications cannot be
used effectively to understand the dynamic behavior of
distributed systems. Such specifications do not express
collective behavior very well and often do not define
consistency conditions against which dynamic behavior
can be evaluated. Further, natural-language specifications
usually lack completeness, and suffer from ambiguities
and inconsistencies. On the other hand, reference
software includes complexity irrelevant to the
fundamental requirements of the specification. Further,
reference software typically will implement one particular
design choice in cases where a specification may allow
various alternatives.

To overcome these shortcomings, we adopted an
approach that entails the following general steps: 1)
construct an architectural model of each discovery
protocol, 2) identify and specify relevant consistency
conditions that each model should satisfy, 3) define
appropriate metrics for comparing the behavior of each
model, 4) construct interesting scenarios to exercise the
models and to probe for violations of consistency
conditions, and 5) compare the results from executing
similar scenarios against each model. Below, we elaborate
our approach, using Jini as a specific example, and show
how Jini can be modeled using Rapide, an Architecture
Description Language (ADL). We also discuss the Rapide
run-time, which converts our Jini model to an executable
specification. First, we introduce discovery protocols, and
define some consistent terminology that we can use to
build comparable architectural models.

2.1. Discovery Protocols in Essence

Discovery protocols enable software components to
find each other on a network, and to determine if
discovered components match their requirements.
Further, discovery protocols include techniques to detect
changes in component availability, and to maintain,

within some time bounds, a consistent view of
components in a network. Many diverse industry
activities explore different approaches to meet such
requirements; leading to a variety of proposed designs for
service discovery protocols [2]-[7]. Some industry groups
approach the problem from a vertically integrated
perspective, coupled with a narrow application focus.
Other industry groups propose more widely applicable
solutions. For example, a team of researchers and
engineers at Sun designed a general service discovery
mechanism atop Java(tm), which provides a base of
portable software technology. The proliferation of service
discovery protocols motivates deeper analyses of their
designs. Beyond this, given the level of debate within the
industry, a comparative analysis can help to assess the
relative merits of particular protocols.

To help us compare protocols, we developed a general
UML (Unified Modeling Language) model, expressed
with a consistent terminology (see Table 1) that provided
a basis for the Rapide architectural model. The main
components in our general model include: 1) service
manager (SM), 2) service user (SU), and 3) service cache
manager (SCM), where the service cache manager is an
optional element not supported by all discovery protocols.

Table 1. Mapping Concepts Among Various Discovery Protocols.

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

These components participate in the discovery,
registration, and consistency maintenance processes that
comprise dynamic discovery protocols. A service
manager maintains a database (Service Repository) of
records (Service Descriptions, or SDs), where each record
describes the essential characteristics of a particular
service or device (Service Provider, or SP). Each SD
contains the identity, type, and attributes that characterize
a SP. Each SD also provides up to two interfaces (an
application-programming interface and a graphic-user
interface) to access a service. Table 1 shows how these
general concepts map to specific concepts for Jini, UPnP,
and SLP. Since the paper uses Jini as an example, we
provide a brief synopsis.

2.2. Jini in Brief

Upon startup, a Jini component (SU, SM, or SCM)
engages in a discovery process to locate other, relevant
Jini components within the network neighborhood. To
oversimplify things: 1) SMs attempt to discover relevant
SCMs with which to register a SD for each SP managed
and 2) SUs attempt to discover relevant SCMs to query
for SDs that lead to desired SPs. In other words, SUs and
SPs rendezvous through SDs registered by SMs with
particular SCMs, where the SCMs are found through a
discovery process.
 2.2.1. Jini Discovery. Jini encompasses two discovery
modes, multicast and directed, supported by three
discovery processes, which we call aggressive, lazy, and
directed. Both aggressive and lazy discovery involve
multicast communication among Jini components
participating in two multicast groups. Upon initiation, a
Jini component enters aggressive discovery, where it
transmits probes at a fixed interval for a specified period,
or until it has discovered a sufficient number of SCMs.
Upon cessation of aggressive discovery, a component
enters lazy discovery, where it listens for announcements
sent at intervals by SCMs. This implies that during lazy
discovery a SCM both listens for announcements by other
SCMs and sends its own announcements at the required
intervals. Figure 1 gives a simplified illustration of the
two Jini discovery modes, and the three supporting
processes.

During aggressive discovery, probes sent by Jini
components identify interest in one or more
administrative scopes, which Jini calls groups; probes
also contain a list of SCMs already discovered by the Jini
component. Each SCM must reply to a probe only when
the list of groups contained within the probe intersects
with the SCM’s own list of groups in which it is a
member, and also provided that the probe does not
indicate that the SCM has already been discovered. Once
a relevant SCM is discovered, the discovering component
requests an application-programming interface (API) that
enables the component to interact with the SCM.

Lazy discovery operates similarly. Announcements
sent by SCMs identity group membership. A Jini
component requests an API from an announcing SCM
when the following conditions hold: 1) the group
membership of the SCM intersects with the groups of
interest to the component, 2) the component has not
already discovered the SCM, and 3) the component has
not already discovered enough SCMs. Receipt of an API
from the SCM ends the discovery process between the
component and the SCM.

SU, SM, or
SCM

SCM API

Request SCM API

Probe groups() SCMs ()

TCP Connect

AGRESSIVE DISCOVERY

SCM

LAZY DISCOVERY

Announce groups()

TCP Connect

SCM API

Request SCM API

DIRECTED DISCOVERY

TCP Connect

SCM API

Request SCM API

M
ul

tic
as

t
M

od
e

D
ire

ct
ed

M
od

e

Fig. 1. Jini has two discovery modes (multicast and directed) that
encompass three discovery processes. In multicast mode, aggressive
discovery is initiated on node startup, and then lazy discovery begins
after aggressive discovery completes. In directed mode, directed
discovery is used to look for specified SCMs.

Directed discovery operates differently from multicast
discovery. Each Jini component may be given a specific
list of SCMs to discover. For each SCM on the list, a Jini
component establishes a connection and requests an API.
Should the SCM prove unavailable, the component can
continue to retry connecting. As explained later,
ambiguities regarding interaction between directed and
multicast discovery lead to several problems for the Jini
specification.

 Once a Jini component obtains an API from a SCM, the
component can use the API to access services provided
by the SCM. To allow the component and the SCM to
reside on different network nodes, the API must use a
communication protocol, such as Java Remote Method
Invocation (RMI)2, which enables the component to
access SCM services as if they resided within the same
Java Virtual Machine (JVM). In general, SCM services
can be classified as registration and consistency
maintenance, which Jini refers to as leasing.

2.2.2. Jini Registration. A SM holds a SD for one or
more SPs. The SM must register each of these SDs with
each SCM discovered. As part of the registration request,
the SM asks that the registration remain valid for some
duration. If the SCM agrees to add the SD to its set of
registered services, then the SCM grants a lease time (not

2 Jini does not require the use of any particular technique for remote
procedure calls. In this paper, we use RMI for illustrative purposes.

more than requested) and returns a service item and lease
to the SM. Once a SD is registered with a SCM, SUs can
discover the existence of the related SP by querying the
SCM, or by receiving notifications from the SCM. Before
receiving notifications, a SU must register notification
requests with a SCM. A SU can register a request that a
SCM notify the SU whenever the SCM adds, deletes, or
changes a SD of interest. As with service registrations,
notification requests will be maintained by a SCM only
for an agreed time (the lease period).

2.2.3. Jini Consistency Maintenance. In a distributed
system, new services and devices can be deployed,
obsolete services and devices can be removed, and nodes,
processes, and links can fail. These facts imply that
replicated state, distributed throughout a system, can
become inconsistent. To time bound such inconsistencies,
Jini requires each SCM to periodically purge SD
registrations and notification requests. For this reason, a
SCM assigns a lease to each registration and notification
request. The lease indicates when the SCM plans to purge
the item. To prevent its removal by the SCM, the
registering component must renew the lease prior to the
purge time. In this way, if the registering component fails
(or the network path fails), then the SCM can, within a
bounded delay, remove reference to the item, and, when
appropriate, can notify other interested components. Once
the failure is resolved, the discovery and registration
processes can be restarted for the failed component, and
the previous state might be recovered eventually.

Interactions with SCMs provide another means for Jini
to maintain consistent state. Each component may register
some items with a SCM. In addition, leases for these
registered items must be renewed periodically. Whenever
a component attempts to invoke a SCM method across a
network the possibility exists for a remote exception.
Remote exceptions indicate that the corresponding SCM
(process or node) might have failed, or that the network
link between the component and the SCM might have
failed. A component is free to retry a method invocation,
and to give up after some period of time.

2.3. Complexity and Uncertainty

The foregoing discussion of Jini, while oversimplified,
highlights the inherent complexity and uncertainty
associated with discovery protocols. Complexity arises
from several sources. The protocol involves multiple
parties communicating across a network, which
introduces asynchrony, and which can also introduce
variable delays. Multiparty interactions can be quite
difficult to specify and understand. Further, the protocol
defines various operating modes that could potentially
interfere with one another, and each protocol entity
maintains independently operating behavioral threads,

which implement features that can interact in
unanticipated ways.

Uncertainty also arises because nodes, processes, and
links can appear and disappear without warning.
Discovery protocols must include behavior to cope with
such changes. The coping behavior itself can exhibit
unexpected interactions with the already complex
behavior defined to implement multiparty
communication. Together, this complexity and
uncertainty discourage protocol designers from
attempting to specify the properties of a particular
discovery protocol. Yet, we desire to compare and
contrast the protocols based on such properties. This
conundrum led us to the idea of constructing an
architectural model for each discovery protocol, and
using the models to investigate various properties.

2.4. An Architectural Model for Jini

Broadly speaking, an architectural model comprises a
set of components, and the connections among them,
along with the relationships and interactions among the
components. In our application, an architectural model
expresses structure (as components, connections, and
relations), interfaces (as messages received by
components), behavior (as actions taken in response to
messages received, including generation of new
messages), and consistency conditions (as Boolean
relations among state variables maintained across
different components).

Figure 2 depicts the top level of our Jini architecture
that was realized in Rapide. This architecture consists of
three component types (SU, SM, and SCM) together with
three connection types: Aggressive Discovery Multicast
Group (ADMG), Lazy Discovery Multicast Group
(LDMG), and Remote Method Invocation Unicast Link
(RMIUL). Only one instance each can exist for the
LDMG and ADMG but the SU, SM, SCM, and RMIUL
can be instantiated as multiple instances. Each SU, SM,
and SCM resides on a network node and participates in
service discovery, registration, and consistency
maintenance. To perform these functions, each type of
Jini component is decomposed into subcomponents (not
described in this paper due to lack of space). Jini
components use the ADMG to distribute probes to any
SCMs listening. SCMs use the LDMG to distribute
announcements to any Jini component listening. When
asked to engage in directed discovery, a Jini component
uses one RMIUL to contact each SCM on its directed-
discovery list. To invoke methods on a specific SCM, a
Jini component must use an appropriate RMIUL.

We implement SMs, SCMs, and SUs, as Rapide
interfaces. We define connections, also implemented as
Rapide interfaces, to link Jini components that exchange
events. We use Rapide services to constrain the event

types allowed on each connection. We model two classes
of connection: 1) fan-out multicast links (ADMG and
LDMG) for discovery and 2) unicast links (RMIUL) for
directed discovery and for remote-method invocation.
 Modeling connections as Rapide interfaces allows the
links to encapsulate logic: 1) to control link state (up or
down) and 2) to send appropriate remote exceptions in
response to events sent over a failed link. The remote
exception logic proves significant because some events
require remote exceptions to be sent in one direction,
while other events require bi-directional remote
exceptions. Since nodes may come up or go down at any
time, our model also includes specific events to start and
stop nodes. As we discuss later in Section 5, these
requirements have implications for how ADLs should
model connections.

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

Fig. 2. Our top-level architecture models a distributed Jini by using two
multicast groups and a set of unicast links to connect Jini components
into a topology.

3. Analysis Approach

 Our specification analyses take two forms: property
analysis and event analysis. Both depend upon Rapide’s
ability to execute a specification and to generate events.
We use property analysis to investigate robustness to
dynamic change, including network failure. Property
analysis also provides insight into processes defined in a
protocol specification, and helps to identify ambiguity,
inconsistency, incompleteness, and other flaws. Event
analysis examines Rapide POSETs (partially ordered sets
of events exchanged among components) to discern
underlying causes of observed behavior and performance,
and especially to assess the protocol’s capacity to recover
from network disruption. We also use event analysis to
understand circumstances surrounding specific protocol
design issues, such as race conditions. Property and event
analysis can be used together to evaluate a protocol’s
resilience in the face of network failure. We also suspect
that POSETs can provide a basis for complexity metrics,

another dimension along which we expect to compare
discovery protocols. Our current work has not developed
such complexity metrics. Below, we describe our use of
Rapide to analyze properties and behavior of Jini.

3.1. Property Analysis

 To implement property analysis we define consistency
conditions and then use the Rapide constraint language to
express the negation of each consistency condition. If a
negation is satisfied, then Rapide has detected an
inconsistency. We stimulate periodic events, called
consistency probes, which retrieve values from the
internal state variables of appropriate components. At
each probe interval Rapide checks for the presence of an
inconsistency. In general, discovery protocols attempt to
guarantee time-bounded inconsistency. Our analysis
strives to verify such guarantees. We also seek to identify
unbounded inconsistencies, which persist indefinitely.
Unbounded inconsistencies suggest areas of a
specification, or protocol design, which merit further
attention. Below we give some examples of consistency
conditions. In Section 4, we discuss circumstances in our
Jini model where these consistency conditions do not
hold.
 We posited the quality of service that users might
expect from discovery protocols. Then we defined these
ideas as consistency conditions that specify relationships
a protocol should strive to maintain among state variables
across interacting components. In this paper, we define
selected consistency conditions3 that should hold in the
absence of failures or other dynamic changes that could
permit the conditions to be violated for a transient period.
Several consistency conditions concern the SCM and the
SM. Analogous conditions could also be defined for the
SCM and the SU. For example, a SM can only register a
service description with a SCM it has discovered. This
can be expressed as the following consistency condition:

For All (SM, SD, SCM): (CC1)
 (SM, SD) IsElementOf SCM registered-services
 implies SCM IsElementOf SM discovered-SCMs

In our model, we express the negation of this consistency
condition as a Rapide constraint. Consistency probes
return the contents of each SM’s list of discovered SCMs
and of each SCM’s list of registered services. Rapide
checks various combinations of values for specific pairs
of SMs and SCMs at each probe time. When the negation
is true, an inconsistency exists.
 A second example consistency condition states that if a
SM has discovered a SCM and the SM has a SD for a

3 Consistency conditions we define here do not necessarily reflect the

intent of Jini’s designers.

service that it is managing, then the SM should have
registered the SD with the SCM. Here, a service is
managed if the SM is required to advertise its availability.
This may be expressed as:

For All (SM, SD, SCM): (CC2)
 SCM IsElementOf SM discovered-SCMs &
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

This consistency condition amounts to an inverse view of
CC1. This inverse view can catch specification issues that
CC1 would miss.
 A third example consistency condition states that if a
SM has discovered a SCM through multicast discovery
and has registered its services on that SCM, then there
should be an intersection between the list of groups the
SM is to join and at least one group in which the SCM
holds membership. This can be expressed as:

For All (SM, SD, SCM): (CC3)
 SCM IsElementOf SM discovered-SCMs &
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)
 implies Intersection
 (SM GroupsToJoin, SCM GroupsMemberOf)

Reference to the absence of membership of the SCM in
the SM persistent list eliminates SCMs that the SM found
through directed discovery.

3.2. Event Analysis

 We use event analysis to understand underlying causes
for the observed behavior and performance of discovery
protocols. The general idea is to define a set of usage
scenarios that can be executed against the models of
several discovery protocols. Table 2 provides an excerpt
from a scenario we defined, and provides a sense of the
stimuli that can be simulated. While executing scenarios,
the Rapide run-time produces POSETs that provide a
basis for analyses. POSETs help us to understand
relationships among events, which trace back to specific
behavior in components, and to possible issues within a
specification. The POSETs may also be used to compute
simple metrics, such as number of events generated or
time taken by the model to transition between two
configurations of interest. To support such computation,
we insert performance probes at key points in the Rapide
model. Such probes can compute the desired
measurements, or can place markers in the POSET for
off-line computation. While event analyses can be applied
individually to specific protocols, greater value may
accrue in comparative analysis. Following we give
examples of some event analyses of interest.

Table 2. Sample Scenario Commands with Parameters and Intended
Execution Times.

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

 3.2.1. Identifying and Understanding Race
Conditions. Due to asynchronous processing and
associated delays in communications among components,
distributed systems often exhibit race conditions, where
system behavior can vary depending upon the order in
which events arrive at cooperating components. Though
such problems cannot always be eliminated, it remains
important to identify the existence of specific race
conditions so that application programmers can adopt
appropriate safeguards. We can use Rapide to find race
conditions by asserting and testing consistency
conditions. For example, consider the following:

For All (SM, SD, SCM, SU, NR): (CC4)
 (SU, NR) IsElementOf SCM requested-notifications &
 (SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

This consistency condition indicates that if a SU has
requested notification when a certain service (SM, SD)
registered at a SCM matches specified criteria, then the
SU should become aware of the matching service. While
the Jini specification does not guarantee CC4, we would
be interested to identify situations where the condition
does not hold. In such cases, we can analyze the POSET
to determine specific causes. In this way, we might
uncover race conditions that require an application
programmer to take particular care when using Jini’s
matching mechanisms.
 3.2.2. Measuring and Understanding Protocol
Performance. When comparing various discovery
protocols, we can use Rapide to define and compute
performance metrics, and then use POSET analysis to
investigate the underlying behaviors. Of course,
comparative performance must be considered in light of
selected scenarios of interest. For example, consider a
scenario where a major power failure occurs after the
discovery phase has completed, services and notification
requests are registered, and SUs have received SDs for
services that meet their requirements. During the failure,
most Jini entities lose some internal state: all nodes lose

discovered SCMs; SUs lose SDs for services previously
discovered; but SCMs and SMs must retain specified
persistent information. Upon power restoration, the Jini
components restart and recover. To assess recovery
performance we define two metrics, restoration latency
and restoration overhead, which measure the efficiency of
recovery in terms of total time and number of messages
generated before all SUs rediscover their original set of
SDs. Restoration latency covers node start-up delays,
transmission times, processor background workload, and
times for processing transaction data. Restoration
overhead includes all events exchanged by Jini
components from power up through complete restoration
of the desired state.

4. Selected Analysis of the Jini Service
Discovery Protocol

 In this section we discuss some results obtained
running scenarios against our Jini architectural model.
We were able to verify the robustness of Jini’s design in a
range of failure scenarios that are not presented here due
to lack of space. However, we found the Jini specification
unclear regarding interactions between multicast and
directed discovery. In particular, we could not discern
whether discovered SCMs should be kept on a single list
or whether SCMs found by directed discovery should be
kept on a separate list from SCMs found by multicast
discovery. We included both interpretations in our Jini
model, and we ran related scenarios to evaluate CC1 and
CC2. We also noticed that the Jini reference
implementation permits administrators to alter the
operation of a running SCM. We were interested to
consider if such changes could adversely affect a Jini
network, so we ran related scenarios to evaluate CC3.
Further, we discovered an apparent race condition that is
difficult to discern from reading the Jini specification, so
we ran scenarios to evaluate CC4. We also executed
selected scenarios to understand some performance
characteristics of Jini systems. Here, we discuss restart
from power failure. While the work described here
suggests some incompleteness and ambiguity (already
shared with Sun) in the Jini specification, our purpose is
to illustrate an architecture-based approach to model,
analyze, and compare service discovery protocols.
Regardless of any ambiguity and incompleteness
discussed here, overall we found Jini to operate as
specified.

4.1. Interfering Interactions between Directed
and Multicast Discovery

 The Jini specification permits a Jini component to
engage simultaneously in two modes of discovery:

directed and multicast. However, the specification is
unclear with respect to issues that arise regarding
interactions between these two modes. This means that an
implementer must make some decisions, which can lead
to various difficulties. We identified decisions that cause
local interference between independent processes on the
same Jini node. We also found decisions that cause
independent processes on the same Jini node to interfere
with the node’s remote state on discovered SCMs. We
discuss these situations below.
 4.1.1. Local Interference. For the following
discussion, assume that the implementer decides to
maintain a single list of SCMs discovered by a SM.
Figure 3 illustrates (using a simplified description) what
occurs during a scenario where SM4 uses multicast
discovery to find SCMs in a Jini group (GROUP2).

Scenario SM4 SCM3

GroupJoin GROUP2

Found SCM3 GROUP2Discovered SCMs
(SCM3) Register SM4 SD1 Registered Services

(SM4, SD1)

AddSCM SCM3

GroupLeave GROUP2 Discover SCM3

Cancel SM4 SD1

Registered Services
()Found SCM3

Cancelled SM4 SD1

Discovered SCMs
(SCM3)

Discovered SCMs
()

+

+

+

-

- Register SM4 SD1 Registered Services
(SM4, SD1)+

CC1 Violated

Registered Services
()-

Lease Expired
SM4 SD1

Probe SM2 GROUP2

Consistency Restored

No Duplicates Allowed

Fig. 3. Example of local interference between directed and multicast
discovery modes.

In this case SM4 discovers SCM3, also a member of
GROUP2. Shortly after, SM4 is told to discover SCM3
(AddSCM) through directed discovery, and at the same
time SM4 is told to drop membership in GROUP2. The
resulting behavior leads to a time-bounded violation of
CC1, which states that a SD should not be registered on a
SCM if the SCM is not on the discovered list of the SM
managing the SD. The specific behavior follows.
 Through multicast discovery SM4 finds SCM3 and
adds it to the list of discovered SCMs. Subsequently,
SM4 is asked simultaneously to leave GROUP2 and to
discover SCM3. The group leave causes SM4 to first
cancel leases for SDs held on SCM3 and then to remove
SCM3 from its list of discovered SCMs. Between these
two events, SM4 uses directed discovery to find SCM3
and then attempts to add SCM3 to its list of discovered
SCMs. Since our model assumes that probes will be built

from the list of discovered SCMs, we decided not to
insert duplicate SCMs in that list.4 This rule is enforced
by the list maintenance function. Therefore, in Figure 3,
the second discovery of SCM3 is not added to the list of
discovered SCMs because it’s already there. Soon
thereafter, SM4 completes lease cancellation for SDs on
SCM3 and then removes SCM3 from its list of discovered
SCMs. In the meantime, the directed discovery process in
SM4 registers SDs with SCM3. At that point, CC1 is
violated, and remains so until the leases for the SM4 SDs
expire on SCM3.
 4.1.2. Remote Interference. Suppose that an
implementer decides to maintain SCMs discovered by
multicast and directed discovery on separate lists? In this
case, local interference disappears, only to be replaced by
a form of remote interference, where two discovery
processes within the same node independently manipulate
the state of SDs on SCMs. Figure 4 illustrates behavior
from a scenario that uncovers this problem through
violation of CC2, which states that services managed by a
SM must be registered on all discovered SCMs. In the
scenario, SM4 uses directed discovery to find SCM1.
Later SM4 is instructed to join GROUP1, which includes
SCM1. This causes a duplicate service registration, which
leads SCM1 to abrogate the existing lease for (SM4,
SD1). Subsequently, SM4 is told to leave GROUP1. In
the end, this causes SM4 to cancel leases for its SDs held
on SCM1, resulting in a situation where SCM1 is on the
list of SCMs discovered directly by SM4 but where the
SDs from SM4, which were originally registered through
the directed discovery action, are not now registered on
SCM1. Assuming that SM4 maintains a single
registration process, this violation of CC2 is unbounded
in time.

4.2. Insensitivity to Changes in Group
Membership by SCMs

 The Jini reference implementation includes an
interface that permits an administrator to alter parameters
associated with a running SCM. We mirrored this
behavior within our Jini model, and then exercised the
option to change group membership of a running SCM.
Figure 5 illustrates the relevant subset of a related
scenario. First, SM4 is instructed to join GROUP1, which
leads to the multicast discovery of SCM1 (a member of
GROUP1).
Subsequently, an administrator removes (AdminDelete
Group) SCM1 from membership in GROUP1. Once this
occurs, CC3 is violated because: (1) SM4 has found
SCM1 with multicast discovery, (2) SDs managed by
SM4 are registered with SCM1, and yet (3) SM4 and

4 Allowing duplicates on a single list leads to a number of other

problems, which are beyond the scope of the discussion here.

SCM1 have no common group membership. The
violation of CC3 continues in a time-unbounded form so
long as SM4 renews leases on SCM1.

 Scenario SM4 SCM1

GroupJoin GROUP1 Probe SM4 GROUP1

Discovered SCMs
MD()

DD (SCM1)
Register SM4 SD1

Registered Services
(SM4, SD1)

AddSCM SCM1

GroupLeave GROUP1

Discover SCM1

Registered Services
()

Found SCM1

Cancelled SM4 SD1

Discovered SCMs
MD (SCM1)
DD (SCM1)

Discovered SCMs
MD ()

DD (SCM1)

+

+

+

-

-

Register SM4 SD1

Registered Services
(SM4, SD1)+

CC2 Violated

Registered Services
()-

Found GROUP 1 SCM1

Cancel SM4 SD1

Fig. 4. Example of remote interference between directed and multicast
discovery modes

 Scenario SM4 SCM1

GroupJoin GROUP1
Probe SM4 GROUP1

Groups To Join
(GROUP1)

Registered Services
(SM4, SD1)AdminDeleteGroup GROUP1

Group Membership
(GROUP1, GROUP2)+

+

Register SM4 SD1
+

CC3 Violated

-

Found GROUP 1 SCM1

Group Membership
(GROUP2)

Discovered SCMs
MD (SCM1)

DD ()

Groups To Join
(GROUP1)

Fig. 5. Example of insensitivity to group membership changes by the
SCM.

 These results suggest that the Jini specification may be
incomplete with regard to this issue. While an
administrator can remove group membership from a
running SCM, the Jini protocol specifies no behavior in
reaction to this new information. As a SCM continues to
issue announcements, which contain its current group
membership, other Jini components are told to ignore
announcements from SCMs that do not belong to groups
of interest. As shown in the discussion above, this can
lead to a situation where SMs (as well as SUs) may
continue to maintain registration with SCMs no longer
relevant. This might or might not be the intent of Jini’s
designers; however, the issue should be addressed in the
specification.

4.3. Race Conditions

 All distributed systems exhibit the possibility for race
conditions. Our architectural model permits us to
investigate how such conditions can arise. Figure 6
presents a portion of a scenario illustrating a race between
service registration by SMs and registration of
notification requests by SUs.

 Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

Fig. 6. Example race condition between service registration by an SM
and notification request registration by an SU.

 In this case, SU7 discovers SCM1 and then queries it
for a matching service. At the time of the query, SCM1
does not contain a SD for a matching service and so
replies without matches. In this particular scenario, SU7
delays for 10s its request to be notified by SCM1 when a
SD for a matching service is added to the SCM cache. In
the interim, SM4 discovers SCM1 and registers a SD for
a service matching the needs of SU7. Unfortunately, the
only matching service was registered during the interval
between the query and the request for notification by
SU7. In Jini’s definition of matching semantics, SU7 can
continue to renew leases for its request for notification
and SM4 can continue to renew leases for its SD and the
two will never learn of each other. This situation results
in a time-unbounded violation of CC4, which states that if
a SCM holds a notification request from a SU, which
matches a SD also held by the SCM, then the SU should
know about the matching SD.
 While this violation of CC4 can be attributed to the
10s delay before SU7 sends a notification request, a
number of other situations can lead to similar results. For
example, network congestion can delay the reply to the
original query by SU7 or can delay the request by SU7
for SCM1 to register its notification. Alternatively,
competing processing within the node supporting SU7
could delay the generation of its notification requests. To
account for this, SUs might issue a second query for a

matching service after the notification request is
registered with a SCM. In this way, the SU can detect any
matching SDs registered by the SCM after the first query
but before the notification request.

4.4 Restart Performance

 To demonstrate the ability of our architectural model
to provide insight into performance-related behavior, we
describe the results of an experiment to investigate the
restart of a Jini network following recovery from a major
power failure. The experiment topology consists of nine
nodes (three of each type: SU, SM, and SCM). We
partition the nodes into threes, where each partition
consists of one SU attempting to rendezvous with one SM
through a SCM. Once all SUs have found their assigned
SMs, we simulate a major power failure, which causes all
nodes to crash for 40s. We then restore the power and
wait for all SUs to rendezvous with their assigned SMs.
Table 3 gives the values for relevant experiment
parameters. Upon restart, each Jini node chooses a
random delay before beginning discovery; we used delays
uniformly distributed between two and 15s. We also had
each SU and SM request leases of 30s for notification
requests and service registrations, and we had each node
renew the leases for a period of 100s. For each link, we
introduced variable transmission delays; for each node,
we introduced variable processing-load delays. We also
introduced processing delays for manipulating items in
the discovery databases and the SCM registration
databases. Since the Jini specification did not address the
persistence of notification requests upon SCM failure, we
assumed that this information was purged on failure.

Table 3. Parameter values used in the power-failure restart performance
experiment. Some values reflect settings of Jini protocol parameters,
while others reflect assumptions regarding transmission and processing
delays.

5s (7 times)Probe Interval (and period)

120sAnnounce Interval

2s – 15s uniformNode Restart Delay

Jini
Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10us – 100 us uniformProcessing Load Delay

1us – 10us uniformTransmission Delay
Delays

Purge on SCM FailureNotification Requests

100sTotal Leasing Duration

30sPer Lease Time

ValueParameterParameter Class

5s (7 times)Probe Interval (and period)

120sAnnounce Interval

2s – 15s uniformNode Restart Delay

Jini
Protocol
Parameters

10 us (discovery DBs)
100 us (SCM cache)

Per Item Processing

10us – 100 us uniformProcessing Load Delay

1us – 10us uniformTransmission Delay
Delays

Purge on SCM FailureNotification Requests

100sTotal Leasing Duration

30sPer Lease Time

ValueParameterParameter Class

 We ran the experiment 30 times, measuring the
restoration latency and overhead. In this experiment,
before the original state could be recovered, all nodes had

to restart. For that reason, the maximum node restart
delay dominates the restoration delay. For example, for
our experiment runs, the average maximum node restart
delay was 12.56s (2.09s variance), and the average
restoration latency was 14.76s (3.31s variance). The
restoration overhead in each run depends upon the
restoration latency, because periodic message exchanges
associated with Jini discovery and leasing continue
through the restoration. In this experiment, the restoration
latencies were relatively close, as were the number of
messages exchanged, differing only in the number of
probes sent during aggressive discovery and in the
subsequent number of discoveries. In our runs, the
number of messages exchanged to achieve restoration
ranged approximately between 70 and 90. These results
demonstrate that the same architectural model can be used
to investigate both performance and logical properties of
a distributed system.

4.5 Summary of Findings

 Using our architectural model and usage scenarios we
were able to verify the robustness of Jini mechanisms in a
range of failure scenarios. Further, as supported by the
analyses above, we were able to uncover areas of
incompleteness and ambiguity in the natural-language
specification for Jini. While a static, natural-language
specification, such as Jini’s, contains a reasonable
description of the behavior of each component in
response to specific events, such specifications largely
miss collective behavior arising when various
components interact together in a distributed system, and
especially when pieces of the system change state during
the interactions. In addition, our dynamic, executable
model of the Jini specification permitted us to explore the
behavior and performance of Jini systems in various
realistic scenarios. A static specification cannot hope to
provide similar insights.

5. Assessment of the Architecture-based
Approach

 As part of our work, we assessed how well the Rapide
ADL and analysis tools supported our modeling and
analyses of Jini, with specific attention to analysis of
dynamic behavior. We found that the Rapide ADL
provided valid abstractions to represent and analyze the
structure and behavior of Jini under conditions of
dynamic change. Using Rapide interfaces we easily
represented the major service discovery components, and
subcomponents (not discussed in this paper). The
components proved easy to connect into architectures that
model a network of Jini entities. Our analyses relied upon
Rapide’s ability to represent dynamic behavior through

events, rules, and constraints, and then to analyze the
resulting POSETs. The ability to represent the behavior of
individual components and to analyze the collective
behavior resulting from interactions was key, without
which this analysis could not have been performed. We
did identify some suggestions for improving specific
capabilities that apply generally to all ADLs. Before
discussing these suggestions, we describe general merits
of using an architectural model.

5.1. Merits of using an Architectural Model

 Our Rapide model provided benefits for analysis.
Some of these benefits apply to all ADLs. First, the
architectural model proved more precise, concise, and
informative than the natural-language specification. For
example, the architectural model provided executable
behavior so that we could discover interactions not
apparent from the paper specification. As a consequence,
we were able to identify and address areas of ambiguity,
inconsistency, and incompleteness. While the Jini
specification was supported by a reference
implementation, the architectural model proved easier to
understand and analyze, and permitted us to focus on the
essential complexity inherent in the specification. The
reference implementation entailed incidental complexity
that interfered with our ability to gain a clear
understanding of the behavior of the specification.
Second, a single architectural model can be analyzed for
behavioral, performance, and logical properties. Using a
single model limits the errors and inconsistencies that can
creep in when multiple models must be used to represent
the same specification. Third, using an architectural
model enabled us to readily consider alternative
implementation options, where they were allowed by the
specification, and to identify specification ambiguities.
When addressing ambiguities, the architectural model
enabled us to investigate the ramifications of various
alternate resolutions.

5.2 Areas for Improvement

 Below, we identify and discuss some suggestions for
improving ADLs in several areas: domain-specificity,
simplification through views, representation of structure
and behavior, and support for analysis. While we discuss
these suggestions in the context of Rapide, we believe
they apply more generally to use of ADLs for modeling
architectures for dynamic systems.
 5.2.1. Need for customizable domain-specific syntax
and semantics. Constructing an architectural model
typically entails a partnership between a domain expert
and a system architect. The partnership proceeds more
smoothly when the architecture reflects the terminology
of the domain, allowing the domain expert to review the

specification with less help from the architect. For this
reason, ADLs should support renaming common ADL
constructs such as interfaces, components, connectors or
modules to use terms familiar in the domain. This would
allow the expert to more easily read the specification
without having to learn the ADL in detail. The same
benefit may accrue from allowing customization of
language syntax to be more familiar to domain
practitioners, especially with respect to system behavior.

5.2.2. Improvement to representation of structure.
Rapide, and other ADLs, connect components to
subcomponents and pass events in a strictly hierarchical
manner. One purpose in doing this is to constrain
communications among subcomponents of different
hierarchies in order to limit the introduction of errors
when replacing subcomponents. This requires inter-
component events to propagate through multiple levels in
two hierarchies, leading to several inefficiencies. First, if
the same events must be duplicated as a result, an
unnecessarily large set of events will be created for
analysis. Second, the architecture entails an increased
number of connections, resulting in a larger specification,
which is more difficult to maintain and modify. This
inhibits revision and evolution of system designs,
especially important when modeling dynamic systems,
and also discourages investigation of alternative design
approaches. Third, the strict hierarchy arrangement does
not agree with real-world designs in which
subcomponents of different systems often communicate
directly. To address these problems, we recommend
investigating alternative ways to specify connectivity
between top-level components and subcomponents in an
architectural model, while preserving correct
communications. We plan to address this area further in
future work.
 Beyond the question of number, connections take on
importance for modeling reasons. Specifically, we believe
that connections should be represented as first-class
entities [17], [20], [21], [23]. Many domains, including
networking, have numerous, well-known connection
classes. Such domain-specific knowledge can be encoded
as taxonomies of connection types, provided that
connections can be represented as first-class entities
within the ADL. For example, we found the need to
specify classes of multicast groups and RMI connections
in order to represent systems that dynamically “plug-and-
play” with network components, and to simulate transient
failures, transmission delays, and other network
characteristics. Using connection types allowed us to
more easily specify restrictions on events that pass among
components, and to define constraints on inter-component
behavior, while associating them directly with appropriate
places in an architectural model. Making connections
first class permits still further semantic distinction

between components and connections, thus facilitating
clear and explicit description of architecture. First class
connections also encourage designers to define
constraints for specific connection types and type
hierarchies, so that formal reasoning about connector
behavior can be localized. We suspect this may be of
particular importance for architectures of dynamic
systems, where connections provide a focal point for
analysis.

5.2.3. Improvement to representation of behavior.
As an adjunct to sending and receiving events, a Rapide
component encapsulates a set of state variables. To test
consistency conditions during execution, we needed to
capture and analyze state variables maintained by
multiple components. This required us to adopt several
cumbersome solutions. We believe modeling of
architectures for dynamic systems is greatly facilitated by
permitting definition of component state from a subset of
internal state variables. Component states should be
selectively exported and recorded along with events.
Linking events to changes in state [13] then allows
recording of dependencies for analysis.

Assuming appropriate state variables are exported,
further investigation is needed to determine how best to
define, implement, and evaluate consistency conditions
that involve the state of two or more components and that
account for time. ADL constraint representation should
include rich semantics for this purpose. Further, analyses
of architectures for dynamic systems benefit greatly when
ADL run-time environments include support for
automated evaluation of inter-component consistency
conditions (as some already do), and especially constraint
languages and related constraint-analysis engines that
account for time.

6. Conclusions and Future Work

 Our current work illustrates the viability of an
architecture-based approach to investigate and evaluate
logical and behavioral properties of discovery protocols
under conditions of dynamic change. Our results show
that executable architecture models prove essential to
understand the collective behavior of distributed systems.
In this paper, we demonstrated how such models help to
uncover ambiguity, incompleteness, and other issues in
static, natural-language specifications. Our demonstration
contributes to improving the specification for Jini. We
also argue that a single executable architecture model can
be used to investigate system performance as well as
logical properties. Beyond this, we offered some
recommendations, based on our experience, to improve

the suitability of ADLs to model and analyze distributed
systems.
 In the next phase of our project, we intend to
demonstrate that using architectural models provides a
sound basis on which to compare and contrast the
technical merits of various discovery protocols. The
results from our analyses should provide industry with
better understanding of the design and behavior of
discovery protocols. We will define a generic set of usage
scenarios to measure interesting events common among
all protocols. These scenarios will exploit a common
vocabulary and set of protocol features derived from our
UML model. Similarly, we will identify a set of
consistency conditions, design issues, and performance
metrics that provide a suitable basis for comparison
among discovery protocols. We suspect relevant
consistency conditions and metrics will involve only SMs
and SUs, because not all protocols require SCMs.
 The next phase of the project will also provide a
vehicle for continued appraisal of our architecture-based
approach to investigate distributed system designs under
dynamic conditions. We intend to sharpen and refine our
current assessment. We also hope to make more specific
recommendations on ADL features to better support
domain-specific models, to represent connections, and to
analyze internal state of components. Modeling additional
discovery protocols also provides an opportunity to
examine reuse of architectural components as we attempt
to adapt common functions in architectures for different
protocols. This work should reveal insights regarding
ADL features that facilitate reuse.
 Finally, we suspect, but cannot yet conclude, that the
nature of dynamism in the service-discovery domain
differs from other real-time domains. The next phase of
the project, together with the results of concurrent
research in dynamic change within the defense software
research community, should illuminate this issue as well.
Since automatic component discovery and collaborative
composition will be essential capabilities of future
defense systems, early insights gained into this issue will
likely prove important.

7. Acknowledgments

 The work described in this paper benefits from
financial support provided by the National Institute of
Standards and Technology (NIST), the Advanced
Research Development Agency (ARDA), and the
Defense Advanced Research Projects Agency (DARPA).
In particular, we acknowledge the support of Greg
Puffenbarger from ARDA and John Salasin, DARPA’s
program manager for Dynamic Assembly for System
Adaptability, Dependability, and Assurance (DASADA).
We also gratefully acknowledge the insights that Jim
Waldo, Jini Architect, provided us during several hours of

discussion about our approach and preliminary results,
and in written comments on an earlier draft of this paper.

8. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented
Component Architecture for Self-Forming, Self-Healing,
Network-Centric Systems,” on the www.openwings.org web
site.

[2] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[3] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[4] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[5] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[6] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

[7] Specification of the Bluetooth System, Core, Volume 1,
Version 1.1, the Bluetooth SIG, Inc., February 22, 2001.

[8] B. Miller and R. Pascoe, Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer, Version 1.0,
Bluetooth SIG White paper, July 1, 1999.

[9] C. Bettstetter and C. Renner, “A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol”, Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications,
EUNICE 2000, Twente, Netherlands, September, 13-15, 2000.

[10] G. Richard, “Service Advertisement and Discovery:
Enabling Universal Device Cooperation,” IEEE Internet
Computing, September-October 2000, pp. 18-26.

[11] B. Pascoe, “Salutation Architectures and the newly defined
service discovery protocols from Microsoft and Sun: How does
the Salutation Architecture stack up,” Salutation Consortium
whitepaper, June 6, 1999.

[12] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[13] Allen, R. “A Formal Approach to Software Architecture”,
Ph.D. Thesis, Carnegie Mellon University, CMU Technical
Report CMU-CS-97-144, May 1997.

[14] Garlan, D, Monroe, R., and Wile, D., “Acme: An
Architecture Description Interchange Language”, Proceedings
of CASCON ’97, Nov. 1997.

[15] Melton, R. “The Aesop System: A Tutorial,” Carnegie
Mellon University, Pittsburgh, Pennsylvania, 1998.

[16] Moriconi, M & Riemenschneider, R. “Introduction to
SADL 1.0: A Language for Specifying Software Architecture
Hierarchies,” TR SRI-CSL-97-01, March 1997.

[17] Medvidovic, N., P.Oreizy, J. Robbins, and R. Taylor.
“Using Object-Oriented Typing to Support Architectural Design
in the C2 Style”, Proceedings of SIGSOFT’96: The Fourth
Symposium on the Foundations of Software Engineering
(FSE4), San Francisco, CA, October 16-18, 1996.

[18] Shaw, M. R. DeLine, D.V. Klein, T.L. Ross, D.M. Young,
and G. Zelesnik, “Abstractions for Software Architecture and
Tools to Support Them,” IEEE Trans. Software Eng., vol. 21,
no. 4, pp. 314-335, Apr. 1995.

[19] Vestal, S. MetaH User’s Manual, Version 1.27, Honeywell
Technology Center, Minneapolis, MN 55418, 1997.

[20] Shaw, M., R. DeLine, and G. Zelesnik, “Abstractions and
Implementations for Architectural Connections,” Proc. Third
Int'l Conf. Configurable Distributed Systems, May 1996.

[21] Allen, R. and D. Garlan. "Formalizing Architectural
Connection", Proceedings of the Sixteenth International
Conference on Software Engineering, Sorrento, Italy, Ma 1994,
pp. 71-80.

[22] J. Rekesh, UPnP, Jini and Salutation - A look at some
popular coordination framework for future network devices,
Technical Report, California Software Lab, 1999. Available
online from http://www.cswl.com/whiteppr/tech/upnp.html.

[23] Garlan, D. “Higher Order Connectors”, Workshop on
Compositional Software Architectures, Monterey, CA, January,
1998.
[24] R. Pascoe, “Building Networks on the Fly”, IEEE
Spectrum, March 2001, pp. 61-65.

